Experience-Dependent Pruning of Dendritic Spines in Visual Cortex by Tissue Plasminogen Activator

نویسندگان

  • Nobuko Mataga
  • Yoko Mizuguchi
  • Takao K. Hensch
چکیده

Sensory experience physically rewires the brain in early postnatal life through unknown processes. Here, we identify a robust anatomical consequence of monocular deprivation (MD) in layer II/III of visual cortex that corresponds to the rapid, functional loss of responsiveness preceding any changes in axonal input. Protrusions on pyramidal cell apical dendrites increased steadily after eye opening, but were transiently lost through competitive mechanisms after brief MD only during the physiological critical period. Proteolysis by tissue-type plasminogen activator (tPA) conversely declined with age and increased with MD only in young mice. Targeted disruption of tPA release or its upstream regulation by glutamic acid decarboxylase (GAD65) prevented MD-induced spine loss that was pharmacologically rescued concomitant with critical period plasticity. An extracellular mechanism for structural remodeling that is limited to the binocular zone upon proper detection of competing inputs thus links early sensory experience to visual function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Urokinase-type plasminogen activator promotes dendritic spine recovery and improves neurological outcome following ischemic stroke.

Spines are dendritic protrusions that receive most of the excitatory input in the brain. Early after the onset of cerebral ischemia dendritic spines in the peri-infarct cortex are replaced by areas of focal swelling, and their re-emergence from these varicosities is associated with neurological recovery after acute ischemic stroke (AIS). Urokinase-type plasminogen activator (uPA) is a serine pr...

متن کامل

Activity-dependent release of tissue plasminogen activator from the dendritic spines of hippocampal neurons revealed by live-cell imaging.

Tissue plasminogen activator (tPA) has been implicated in a variety of important cellular functions, including learning-related synaptic plasticity and potentiating N-methyl-D-aspartate (NMDA) receptor-dependent signaling. These findings suggest that tPA may localize to, and undergo activity-dependent secretion from, synapses; however, conclusive data supporting these hypotheses have remained e...

متن کامل

Accelerated Experience-Dependent Pruning of Cortical Synapses in Ephrin-A2 Knockout Mice

Refinement of mammalian neural circuits involves substantial experience-dependent synapse elimination. Using in vivo two-photon imaging, we found that experience-dependent elimination of postsynaptic dendritic spines in the cortex was accelerated in ephrin-A2 knockout (KO) mice, resulting in fewer adolescent spines integrated into adult circuits. Such increased spine removal in ephrin-A2 KOs de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2004